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ABSTRACT: Most climate models in phase 6 of the Coupled Model Intercomparison Project (CMIP6) still suffer pro-
nounced warm and dry summer biases in the central United States (CUS), even in high-resolution simulations. We found
that the cloud base definition in the cumulus parameterization was the dominant factor determining the spread of the
biases among models and those defining cloud base at the lifting condensation level (LCL) performed the best. To identify
the underlying mechanisms, we developed a physically based analytical bias model (ABM) to capture the key feedback
processes of land–atmosphere coupling. The ABM has significant explanatory power, capturing 80% variance of tempera-
ture and precipitation biases among all models. Our ABM analysis via counterfactual experiments indicated that the biases
are attributed mostly by surface downwelling longwave radiation errors and second by surface net shortwave radiation
errors, with the former 2–5 times larger. The effective radiative forcing from these two errors as weighted by their relative
contributions induces runaway temperature and precipitation feedbacks, which collaborate to cause CUS summer warm
and dry biases. The LCL cumulus reduces the biases through two key mechanisms: it produces more clouds and less precipitable
water, which reduce radiative energy input for both surface heating and evapotranspiration to cause a cooler and wetter soil; it
produces more rainfall and wetter soil conditions, which suppress the positive evapotranspiration–precipitation feedback to
damp the warm and dry bias coupling. Most models using non-LCL schemes underestimate both precipitation and cloud
amounts, which amplify the positive feedback to cause significant biases.
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1. Introduction

Most climate models have long-lasting biases in the central
United States (CUS); their simulated summer surface condi-
tions are significantly warmer and drier than observations
(Klein et al. 2006; Cheruy et al. 2014; Lin et al. 2017; Zhang et al.
2018; Ma et al. 2018; Morcrette et al. 2018; VanWeverberg et al.
2018). Given nonlinear interactions and feedbacks in the Earth
system, these biases diminish the reliability of climate predic-
tions and scenario projections (Liang et al. 2008; Lin et al. 2017;
Palmer and Stevens 2019; Jiang et al. 2021). Consequently, the
warm and dry biases disrupt the nonlinear relationships among
surface heat fluxes and water storage and thus reduce the accu-
racy in predicting the critical feedback processes (Rupp et al.
2017). They decrease model ability in predicting extreme heat
or rainfall events and severe weather outbreaks (Kunkel et al.
2010; Pendergrass et al. 2020; Sun and Liang 2020a), which have
profound socioeconomic impacts (Smith and Matthews 2015;
NOAA 2021; Kotz et al. 2022; Liang 2022), including extensive
damages on agricultural productivity (Liang et al. 2017; Y. Li
et al. 2019; Ortiz-Bobea et al. 2021). Therefore, they deteriorate
the prediction reliability on climate–crop interactions in the

CUS}the heartland of U.S. agriculture with summer as the
primary growing season (Mueller et al. 2016). To boost the confi-
dent use of climate predictions or projections in decision-making,
significant model improvements must be made to correct these es-
sential biases.

The modeling community has made tremendous efforts to
reduce these biases. Among these are various empirical bias-
correction techniques (Bellprat et al. 2016; Ardilouze et al.
2019; Chang et al. 2019) to provide improved climate data
necessary for impact assessments. Such posterior corrections,
while useful, do not actually improve the modeling system
representation of nonlinear physical relationships between at-
mosphere and land processes, rendering model predictions
hard to explain, and thus may mislead decision-making that
requires integrated knowledge (Ehret et al. 2012). Given that
the failure to capture convective scale processes may cause
the warm and dry biases (Liang et al. 2007; Lin et al. 2017;
Sun and Liang 2020a), many efforts turn to high-resolution
modeling to replace physics parameterizations. Liu et al.
(2017) demonstrated that even using a grid spacing of 4 km
(convection-permitting), severe biases (up to 68C) in the CUS
still exist. S. Li et al. (2019) tuned model parameters through
a multiphase refinement approach, which reduced the warm
biases to about 38C. Cheruy et al. (2020) improved atmo-
spheric and land surface physics, whereas more than 28C
warm biases remain. Barlage et al. (2021) incorporated
groundwater processes in a convection-permitting model to
reduce the warm biases from 58–68C to still 28–38C. Sun and
Liang (2020b) attempted to infer the physical causes of the
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dry biases through the structural equation model analysis.
Morcrette et al. (2018), Van Weverberg et al. (2018), Ma et al.
(2018), and Zhang et al. (2018) established a special project
named CAUSES (Clouds Above the United States and Errors
at the Surface) to understand the physical mechanisms leading
to CUS warm biases based on surface radiation budget decom-
position analysis. They found that surface evaporative fraction
underestimation and solar radiation overestimation were the
two leading contributors to the warm biases. However, all pre-
vious studies have not fully disentangled the complex feedback
mechanisms among radiation, convection, precipitation, and
surface processes that result in the coupled warm and dry
biases. These endeavors revealed the challenges in resolving
the CUS warm and dry biases.

Our companion paper Sun and Liang (2022, hereafter
S&L) took a solid step to understand and reduce CUS warm
and dry summer biases in the regional Climate–Weather Re-
search and Forecasting (CWRF) Model (Liang et al. 2012)
by improving its ensemble cumulus parameterization (ECP;
Qiao and Liang 2015, 2016, 2017). The improvements in-
cluded a trigger for mesoscale convective systems to occur in
unfavorable environmental conditions, a constraint to sup-
press convections from shallow boundary layers, and a cloud-
to-rainwater conversion to favor anvil formation. In addition,
the trigger defines the cloud base at the lifting condensation
level (LCL) rather than the level of free convection (LFC),
which lowered the cloud base and increased the cloud depth.
Together, the new ECP produced more low- and high-level
clouds to reduce surface shortwave radiation and increase
outgoing longwave radiation, and hence eliminated the warm
and dry biases in a physically consistent manner. S&L demon-
strated the importance of identifying the physical processes
and understanding the underlying mechanisms in order to ac-
tually reduce or eliminate such biases in a specific model.

The CAUSES project has been working on three compet-
ing hypotheses of the key causes for the CUS warm biases: un-
derestimation of precipitation (Lin et al. 2017), cloud (Cheruy
et al. 2014), and evapotranspiration (Mueller and Seneviratne
2014). To this end, S&L explained how improving cumulus pa-
rameterization can increase both low-level cloud and precipita-
tion amounts to consistently eliminate the warm and dry biases
with a realistic atmospheric energy balance. We did that from
the perspective of atmospheric forcing since all changes started
from altering cumulus parameterization that led to surface re-
sponses. As such, we did not address the specific role of evapo-
transpiration in the loop, although its interannual differences
between the new and original ECP contained about 20%–70%
(depending on regions) of total variance in surface air tempera-
ture and precipitation biases. Presumably, there exist strong
land–atmosphere coupling mechanisms that link underestima-
tions of low cloud, precipitation, and evapotranspiration to the
warm and dry biases. However, such links are complex, strongly
depending on climate regimes and model configurations, and it
is particularly challenging to determine which mechanism domi-
nates and whether the atmosphere or surface controls the path-
ways (Findell and Eltahir 2003a,b; Koster et al. 2004; Ferguson
and Wood 2011; Taylor et al. 2012; Santanello et al. 2018; Wei
and Dirmeyer 2012; Zhou et al. 2019).

Land–atmosphere interactions involve soil moisture and tem-
perature, evapotranspiration and sensible heat, solar absorption
and infrared emission, and cloud, convection, and precipitation
through various positive and negative (local or nonlocal) feed-
backs (Santanello et al. 2018). Numerous studies offered diag-
nostic methods to dissect soil moisture–precipitation coupling
mechanisms containing all above variables and processes
(Brubaker and Entekhabi 1995, 1996; Schär et al. 1999; Salvucci
et al. 2002; Findell and Eltahir 2003a; Dirmeyer and Brubaker
2007; Wei and Dirmeyer 2012; Wulfmeyer et al. 2018; Hu et al.
2021). Most of these methods focused on analyzing the feed-
backs in individual models, which may reach varying conclu-
sions specific to land component deficiencies or different
parameterizations used in the coupled land–atmosphere sys-
tem (Williams et al. 2016; Wei et al. 2021). They may not be
as effective for application to identify the key mechanisms
that govern the spread of biases in all related variables among
a large suite of models. They also require high-frequency data
that are typically not available from all models in comparison.

This study aims to identify the model deficiencies that may
likely explain common CUS warm and dry biases among re-
cent climate models and develop analytical modeling to quan-
tify the major contributing factors and associated feedbacks.
The identification and attribution were approached from the
dominant behavior of a large multimodel ensemble rather
than a single model like CWRF. However, the rigorous pro-
cess understanding based on CWRF sensitivity experiments
in S&L offered a unique guidance for the ensemble quantifi-
cation. Section 2 describes the ensemble simulations from the
Coupled Model Intercomparison Project phase 5 (CMIP5)
and phase 6 (CMIP6) and the High-Resolution Model Inter-
comparison Project (HighResMIP, including onlymodels with grid
spacing , 30 km) as well as observational data used. Section 3
presents the warm and dry biases common to these climate
models and conducts composite, decomposition, and regres-
sion analyses to distinguish their strong sensitivity to cumulus
parameterization and statistical relationships among key vari-
ables. In particular, the analyses confirmed that defining the
cloud base at LCL rather than LFC is a major contributor to
reducing the biases. Section 4 develops the analytical bias
model (ABM) to understand the responsible physical pro-
cesses and quantify the key feedback mechanisms. Section 5
conducts counterfactual experiments with ABM to disentan-
gle the feedback loops and identify the key mechanisms that
dominate the systematic biases and spreads among the latest
CMIP6 plus HighResMIP models. Especially, we found thresh-
olds for varying evapotranspiration–precipitation feedbacks to
occur and thus cause systematic warm and dry biases in CUS.
Section 6 gives the conclusions.

2. CMIP simulations and observational data

This study analyzed all present-day simulations currently
available from 61 CMIP6 and 11 HighResMIP models, where
different resolutions of a same model are counted as different
models (see Tables S1 and S2 in the online supplemental
material for model resolution and data availability). Most mod-
els have multiple simulations (or variants) that were realized
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with small perturbations in initial states and physical parame-
ters. In total, there are 592 simulations, with the actual number
of variants available ranging from 592 to 402 among the 15 vari-
ables examined (Table 1). The analyses below were mainly
based on the ensemble mean of all available variants for a
specific variable in each model together with these individual
variants depicting the uncertainty. To identify feedbacks and
mechanisms in which the physical consistency is essential, we
chose the first member (rather than ensemble mean) of each
model with the variant label “r1i1p1f1” (with only a few excep-
tions due to naming differences), where the letters r, i, p, and f
denote respectively the realization, initialization, physics, and
forcing indices of the simulation. We also evaluated 49 CMIP5
models with a total of 212 variants (Table S3) to see if any reduc-
tions in the warm and dry biases were made over the years.
For all these model simulations, our analyses focused on
summer (June–August) averages during the common period
from 1 January 1980 through 31 December 2014.

Table 1 summarizes the observational data used in this
study as the reference to calculate model biases. All data
were available at varying temporal and spatial resolutions and
mapped onto CWRF 30-km grid by conservative or linear
interpolation.

3. Common climate model biases and sensitivity to
cumulus parameterization

Figure 1 compares the geographic distributions of summer
temperature and precipitation biases from observations over the
contiguous United States among the models separately in the
CMIP5, CMIP6, and HighResMIP-high (grid spacing , 30 km)
ensembles. To avoid the result statistics being dominated by
models with large realizations, we first calculated the mean of all
the variants from each model and then averaged the mean
biases over all models in an ensemble. The CMIP5 ensemble
showed average warm biases of 18–38C in CUS. The CMIP6

ensemble produced similar warm biases but in more extensive
areas, expanded from CUS into the central-southern Great
Plains. The HighResMIP-high ensemble simulated even larger
warm biases over broader areas, with centers of greater than
38C. Correspondingly, all ensembles underestimated precipita-
tion in CUS, with the magnitudes and coverages of the dry
biases (over 0.5 mm day21) both increased from CMIP5 to
CMIP6 to HighResMIP-high.

Thus, CMIP6 still simulated large warm and dry biases in
CUS over broader areas than CMIP5, albeit incorporating
more advanced physical parameterizations and higher resolu-
tions (Eyring et al. 2019). Even HighResMIP-high with grid
sizes reaching 25 km could not resolve the warm and dry bias
(see Fig. S1 in the supplemental material for a more balanced
comparison between high- versus low-resolution simulations
from the same models). Simply increasing model resolution
cannot eliminate the biases, while refining physics representa-
tion such as for mesoscale convective systems is essential
(S&L). CMIP5 had other biases, including wet biases in the
northern states between the Rocky Mountains and Great
Plains and along the Appalachian Mountains as well as dry
biases in the coastal areas along the Gulf of Mexico. These
precipitation biases exhibited no apparent link with those of
temperature and were reduced in CMIP6 and more signifi-
cantly diminished in HighResMIP-high. This reduction could
partly result from model resolution increase, a topic warrant-
ing a separate study.

S&L clearly demonstrated the importance of cumulus pa-
rameterization to the CWRF summer warm and dry biases in
CUS among other major regions. Given the corresponding
physical mechanisms identified earlier, here we focused on
the key characteristic differences in cumulus parameterization
that may explain the warm and dry biases common to current
global climate models. One of key findings in S&L was that
the cloud base definition in cumulus schemes plays a critical
role. Below we separated all 72 models from CMIP6 plus

TABLE 1. Observations, resolutions, available years, and their references.

Meteorology variable
Temporal/spatial resolution and

mapping method Years Source

Precipitation Daily at 1-km grid (conservative
interpolated)

1980–present Daymet: daily surface weather data
(Thornton et al. 2016)

Temperature at 2 m Daily at 1-km grid (linear
interpolated)

Shortwave and longwave
radiation at surface and top
of atmosphere (clear/all)

Monthly at 18 3 18 latitude–longitude
grid (linear interpolated)

2000–present Clouds and the Earth’s Radiant
Energy System (CERES) Energy
Balanced and Filled (EBAF)
Edition 4.1 (Loeb et al. 2018)

Sensible heat and latent heat
flux

Monthly at 0.58 3 0.58 latitude–
longitude grid

2001–13 The FLUXCOM ensemble of global
land–atmosphere energy fluxes
(Jung et al. 2019)

Cloud fraction Eight-day 18 3 18 equal-angle grid
(linear interpolated)

2002–present MODIS Cloud Optical Properties:
The Collection 6/6.1 Level-2
(Platnick et al. 2015)

Cloud top pressure
Cloud optical depth
Height, zonal/meridional wind,

omega, temperature, and
specific humidity on
pressure levels

Monthly 32-km grid with 29 pressure
levels (linear interpolated)

1979–present NCEP North American Regional
Reanalysis (NARR) (Mesinger
et al. 2006)
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HighResMIP (hereafter referred to as CMIP6X for brevity)
into nine groups by the cloud base definition in their cumulus
scheme as summarized in Table S4, which includes the respec-
tive abbreviation, main features, and references. The models
were first categorized by cumulus schemes, including BMJ
(Betts–Miller–Janjić; Betts and Miller 1986), AS (Arakawa
and Schubert 1974), GR (Gregory and Rowntree 1990),
PCMT (Prognostic Condensates Microphysics and Transport;
Lopez 2002; Piriou et al. 2007; Geleyn et al. 2008; Guérémy
2011), LMDZ (Hourdin et al. 2020), ZM (Zhang andMcFarlane
1995), GY (Del Genio and Yao 1993), and TDK (Tiedtke 1989).
Since BMJ does not use cloud mass flux explicitly, the first-order
relationships among downdraft, cloud depth, and others are irrel-
evant. AS and GR define the cloud base at LFC, PCMT at LCL,
and LMDZ at 40 hPa above LCL, while ZM and GY define it
at the particle lifting level (PLL). In contrast, TDK adopts
either the LCL or LFC definition and hence is subdivided
into TDK_LCL or TDK_LFC.

Figure 2 compares the ensemble mean temperature biases
among the nine groups. Each group contains all the models
adopting a same cumulus scheme, and each model is also shown
with its own multirealization mean biases averaged in CUS. In
general, the groups defining the cloud base at LCL (TDK,
PCMT) simulated smaller warm biases than LFC (TDK, AS,
GR). Themost direct comparison wasmade with TDK, in which
using LCL rather than LFC produced systematically cooler air

in most of the eastern United States, essentially eliminating the
large warm biases in CUS. This TDK_LCL resembled our new
ECP in CWRF improved by S&L as they used the same cumulus
trigger. In contrast, LMDZ still had warm biases in CUS and the
Northeast, likely because it elevated the cloud base by 40 hPa
above LCL. On the other hand, ZM estimated PLL as the maxi-
mum moist static energy level. Since this PLL is usually lower
than LCL (Wu 2012), a parcel rising from PLL to LCL may ex-
perience negative buoyancy (Zhang and McFarlane 1991), re-
ducing the total cloud-work function. The net effect of defining
the cloud base at PLL is equivalent to reducing the effective
cloud depth. This may partially explain why ZM using PLL gen-
erated large warm biases like other schemes using LFC. A seem-
ing contradiction appeared with GY, which also used PLL but
yielded cold biases (see below for further discussion).

Figure 3 compares the ensemble mean precipitation biases
among the nine groups. Clearly, TDK using LCL (rather than
LFC) largely reduced the dry biases in CUS. Meanwhile, the
cumulus schemes using LFC (TDK, GR) and PLL (ZM) sim-
ulated notable dry biases. These were consistent with the re-
duction of the warm biases from LCL versus LFC. On the
other hand, the dry biases in CUS (excluding the southern re-
gion) were not evident in AS using LFC but obvious in PCMT
and LMDZ using LCL. In addition, GY even overestimated
precipitation, accompanying a cold bias. This could result from
the precipitable water increase by allowing convective rain

FIG. 1. Summer surface air temperature (8C) and precipitation (mm day21) biases during 1980–2014 averaged among CMIP5, CMIP6,
and HighResMIP-high (grid spacing , 30 km) models. The “M” stands for the total number of models, and the “V” is the total number
of variations used in calculating the ensemble mean. The blue dot box (318–528N, 898–988E) outlines the boundary of CUS.
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evaporation above the cloud base (Kim et al. 2012), which was
deactivated in the latest model (Rind et al. 2020). It is difficult
to interpret these mixed results since no clean experiment was
available for these cumulus schemes directly separating LCL
versus LFC as in TDK. Nevertheless, the choice of the cumulus
parameterization scheme plays a significant, if not dominant,
role in the contrast in precipitation biases among the models.
While parameterized (convective) and resolved (large-scale)
precipitations affect cloud–radiation interactions very differ-
ently (Lin et al. 2013), their relative contributions to model
biases or even extreme events are not fully understood (Liang
et al. 2019; Sun and Liang 2020b). However, our analysis of con-
vective precipitation (Fig. S2) and its ratio to total amount
(Fig. S3) showed no significant correspondence with CUS warm
and dry biases (Fig. S4).

Figure 4 compares CUS regional mean temperature, pre-
cipitation, total cloud cover, and precipitable water biases
among 72 CMIP6X models as grouped by cumulus schemes
and cloud base definitions. In general, the models using the cu-
mulus schemes defining the cloud base at LCL (PMCT, TDK,
LMDZ) simulated the least dry and warm biases associated

with more cloud cover and less precipitable water, while those
defining at LFC (AS, TDK, GR) or PLL (GY, ZM) produced
larger biases with less cloud and more precipitable water (see
Figs. S5 and S6 for their spatial distributions). Since high- and
low-level clouds have generally opposite radiative warm and
cooling effects (partially explained LMDZ’s total cloud under-
estimate), a more physically consistent picture would be drawn
if cloud data at different levels were available for direct com-
parison. As discussed earlier, GY_PLL is an exception, having
cold and wet biases. On the other hand, BMJ behaved differ-
ently from all others, producing cold but dry biases, indicating
inconsistent physics representation (see below for further dis-
cussion). TDK_LFC had the largest bias spread; a closer scru-
tiny (Table S5) showed that the outliers (with largest high
warm and dry biases) were from two high-resolution simula-
tions (MPI-ESM1-2-XR and INM-CM-5).

Figure 5 compares CUS regional mean biases in tempera-
ture, precipitation, cloud albedo [shortwave reflection; see the
supplemental material for calculation following Betts (2007)],
and surface energy fluxes among 72 CMIP6X models as grouped
by cumulus cloud base definitions, which include LCL (15),

FIG. 2. Summer surface air temperature (8C) biases, grouped 72 CMIP6X (CMIP6 plus HighResMIP) models into nine types by cumulus
schemes and cloud base definitions. See Fig. 1 for other information.
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LFC (26), PLL (27), and BMJ (4). Apparently, BMJ is an
outlier with large cold but relatively small dry biases (20.68C,
20.3 mm day21). It substantially overestimated both shortwave
surface reflection and cloud attenuation (17.6 and 5.7 W m22),
causing large underestimates of surface net shortwave and hence
total (shortwave plus longwave) radiation fluxes (210.6 and
27.0Wm22). Corresponding to its cold bias, BMJ simulated sur-
face net (shortwave, longwave, total) radiation and sensible heat
biases totally opposite to those by other cloud base definitions,
indicating inconsistent treatment for surface reflection and cloud
effect.

Clearly, LCL had the smallest temperature and precipita-
tion biases (0.28C, 20.3 mm day21), whereas LFC yielded
much larger biases (2.38C, 20.6 mm day21). Consistently,
LCL simulated the most realistic surface shortwave cloud ra-
diative effect, net shortwave, longwave, and total radiation,
and sensible heat with small biases (20.4, 7.4, 23.0, 4.4, and
4.0 W m22). As demonstrated in S&L, LCL reduced excessive
convective mass flux and thus cumulus drying and warming so
to generate sufficient low-level clouds and attenuate more
downwelling shortwave radiation. On the other hand, LFC
largely underestimated cloud amount so to systematically

overestimate cloud radiative effect and surface fluxes (17.3,
16.4, 28.3, 8.1, and 16.9 W m22), all of which were much
larger in magnitude than the corresponding values of LCL. PLL
resembled LFC with not only close temperature and precipitation
biases (2.28C, 20.7 mm day21) but also similar biases in respec-
tive cloud radiative effect and surface fluxes (6.1, 13.8, 27.3, 6.5,
and 15.2 W m22). The main PLL difference from LFC was in re-
ducing the cloud radiative effect by 65%. LCL also simulated a
much smaller surface latent heat bias than LFC and PLL (210.4
vs 218.8 and 219.6 W m22). This was well reflected in the con-
trast among their precipitation biases.

In summary, the CUS summer warm and dry biases and their
spread among the latest CMIP6X models strongly depend on cu-
mulus parameterization, in which the cloud base definition is a
critical factor separating systematic model differences. In particu-
lar, defining the cumulus cloud base at LCL results in the least
warm and dry biases with more realistic surface energy partition-
ing among sensible and latent heat, and radiation components.

Figure 6 shows the statistical relationships among CUS
summer biases in cloud albedo, surface radiation fluxes, and
surface heat fluxes simulated by 72 CMIP6X models. For
each model and each field, all its variants were used to

FIG. 3. As in Fig. 2, but for precipitation biases (mm day21).
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calculate the mean and standard deviation, with the latter de-
picting uncertainty. Linear regressions were then made on
these means averaged in CUS among these fields, with the re-
spective one deviation depicting their uncertainty range. For
the surface energy budget averaged over all models, biases (in
W m22) in radiation components were the largest for SWd

(23.9), reduced by about half for SWu (11.8) and LWu (10.5),
and the smallest for LWd (4.3). The net total radiation (Rn)
was overestimated by 5.9 W m22, which was compensated by
smaller LH (216.6) and larger SH (12.1). This resulted in a
net energy surplus of 10.4 W m22, which was balanced by
larger heat flux into the ground.

For the two radiation components directly affected by the
atmosphere and as the energy inputs to the surface, the vari-
ance explained is 89% for SWd by cloud albedo alone and
64% for LWd by precipitable water. While the two inputs are
independent (with 0 covariance), their partitioning into other

surface energy components is our main concern. The variance
percentage explained for SWu, LWu, SH, and LH was respec-
tively 22, 37, 27, and 4 by SWd and 2, 46, 16, and 8 by LWd. It
is surprising to notice that biases in LH (hence evapotranspi-
ration or ET) and SWd had almost no correspondence among
the models. Little correspondence was seen between SWu and
LWd biases. The model spread in SWd biases was distributed
mostly into those in LWu, SH, and SWu, while the LWd spread
was partitioned mainly among those in LWu, SH, and LH. It is
important to note that the spread in net radiation gain (Rn) ex-
plained 95% variance of moist enthalpy flux (SH 1 LH),
whereas the residual (ground heat flux) barely contributed any
to temperature (0.07) or precipitation bias (0.05). The sum of
LWd and SH explained 83% variance of LWu, much more
than each individually (46% and 69%; not shown).

Figure 7 illustrates the statistical relationships among CUS
summer biases in precipitation and its decomposed diabatic

FIG. 4. Summer surface air temperature (T2; 8C), precipitation (PR; mm day21), total cloud cover (TCLD; %), and
precipitable water (PW; kg m22) biases during 1980–2014 in CUS grouped 72 CMIP6X models into nine types by
cumulus schemes and cloud base definitions.
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FIG. 5. Characteristics of summer CUS bias among multiple physical variables from four broad types (CMIP6X total 72 models) during
1980–2014. They are (a) near-surface temperature (T2), (b) daily precipitation amount (PR), (c) cloud radiation effect (CRE) and total
cloud albedo (CA), (d) surface sensible heat (SH), (e) surface latent heat (LH), (f) net radiation at the surface (Rn), (g) downwelling
shortwave radiation at the surface (SWd), (h) upwelling shortwave radiation at the surface (SWu), (i) net shortwave radiation at the sur-
face (SWn), (j) downwelling longwave radiation at the surface (LWd), (k) surface longwave emission (LWu), and (l) net longwave radia-
tion at the surface (LWn). Blue lines represent 95% confidence interval estimated by the bootstrapping method of Linnet (2000) with
1000 resamples.
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cooling components simulated by the 72 models. The model
spread in precipitation biases was mainly determined by those
in SH and LWu, which explained respectively 64% and 55%
variance. The remaining radiation components, LWd, SWu,
SWd, TOA shortwave reflection (SWTOA

u ), and outgoing long-
wave radiation (OLR), contributed much less to the diabatic
cooling bias spread, explaining only 20%, 1%, 6%, 10%, and
4% variance, respectively; their total contribution was 20%. The
last component LH was mostly compensated by SH (negatively
correlated, explaining 78% covariance), canceling each other with
their sum explained only 9% variance of precipitation biases. As
such, precipitation biases were positively correlated with LH
biases, which explained 74% variance, somewhat larger than

SH. This result agrees with the widely held view that summer
CUS has the wet-soil advantage, where wetter soil more favor-
ably triggers convection (Findell and Eltahir 2003a,b; Koster
et al. 2004; Ferguson and Wood 2011; Santanello et al. 2018).
The energetic negative association between SH and PR re-
flected the underlying mechanism, that is, less LH reduced PR
and left more energy for SH.

4. Developing the analytical bias model (ABM) to
explain CMIP ensemble errors

The results presented in section 3 with Figs. 1–7 were all
based on statistical analyses of CMIP model biases, showing a

FIG. 6. Association of biases in downwelling shortwave/longwave radiation at the surface (SWd, LWd,) with upwelling shortwave (SWu)
and emission longwave radiation (LWu) at the surface, sensible/latent heat (SH, LH), and the cloud albedo (CA) or precipitable water
(PW). (a) Averaged bias over all models, with blue lines representing the 95% confidence interval estimated by the bootstrapping method
of Linnet (2000) with 1000 resamples. (b)–(l) The other scatter diagrams show the linear regression line with the 95% confidence interval
(shading) and explained variance (red text). Regional mean (during 1980–2014 in CUS) biases from individual models (CMIP6X total
72 models) are denoted with empty black circles. Also shown are the associations (m) between the moist enthalpy flux (H) and the net
radiation at surface (Rn), (n),(o) between the ground heat flux (G) and the temperature/precipitation bias, and (p) between LWu and the
summation of LWd and SH.
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strong sensitivity to cumulus parameterization and significant
relationships among key variables. These statistics cannot re-
veal nonlinear feedbacks essential to the coupled climate sys-
tem nor reflect the causality of the actual physical system
(Pearl 2009). Therefore, below we developed the ABM that
captures the physical mechanisms underlying the CUS warm
and dry biases. The LCL-based schemes simulated more low-
level cloud and less total precipitable water, which reduced net
shortwave and longwave downwelling at the surface (Figs. 4–6;
S&L). Thus, the purpose of the ABM is to link the coupled (T2,
PR) biases to these surface radiation (LWd, SWn) differences.
Our focus is on the key mechanisms and feedbacks that domi-
nate the systematic biases and spreads among the latest
CMIP6X models. Table S4 summarizes the important notations
used in this study. For radiation fluxes, unless specifically de-
noted with a superscript TOA for the top of atmosphere, they
are all at the surface, where the subscripts d, u, and n represent

downwelling, upwelling, and net (d minus u) fluxes, respec-
tively. Table 2 lists the key parameters used in the ABM, where
the subscript 0 depicts a prescribed value, and the overbar de-
noted CUS summer averaging over all analysis years (35) and
across all CMIP6X models (72).

As illustrated in Fig. 8, the ABM approximates the interac-
tions among the three major physical processes that link
1) PR to Rn, SH, and ground temperature (Tg) (the blue hub),
2) LH to PR and Rn (the green hub), and 3) LWu and Tg to
LWd and SH (the orange hub). The term T2 is the conse-
quence of these interactions, coupling Tg, LH, LWd, and SWn

with various feedbacks. While all these variables can be di-
rectly acquired from individual CMIP6X models, our strategy
is to keep some as intermediate or latent variables (rather
than inputs) in the ABM by parameterizing the physical rela-
tionships to activate the essential feedbacks. The derivation of
this ABM starts with the approximations for the atmosphere,

FIG. 7. (a) The variance of PR biases explained by biases in LH, SH, radiation fluxes (see Table S6 for the nota-
tions), the residual of diabatic cooling (Resid5 LWd 1 SWu 1 SWd 1 SWTOA

u 1OLR), and moist enthalpy flux
(LH 1 SH). Red circles with text above represent the explained variance, while blue segments with gray dots repre-
sent its 95% confidence interval estimated by the bootstrapping method of Steck and Jaakkola (2003) with 1000 re-
samples. (b) The association of SH and LH biases. The scatter diagrams show the linear regression line with the 95%
confidence interval (shading) and explained variance (red text). Regional mean (during 1980–2014 in CUS) biases
from individual CMIP6X models are denoted with empty black circles. Shown are in both diabatic cooling (W m22)
(blue axes), and the equivalent precipitation (mm day22) units (black axes).

TABLE 2. Model parameters and their reference values.

Symbol Description Numerical value

AB0 Ball parameter 0.2
Apr0 Apr0 ≡ apr0Tg0/41 E0 4.5 W m22

aH0 Slope for warm advection effects on for dry-static energy divergence parameterization 3.8 W m22 K21

apr0 apr0 ≡ aH0 2 Cg0/G0 0.37 W m22 K21

Cg0 4sT3
g0 5.9 W m22 K21

Ch0 Multiplication of air density, near-surface temperature, heat capacity of air, and drag
coefficient

31 W m22 K21

«0 Combined terms (the shortwave reflectance at TOA, reference value for dry-static energy
divergence and OLR with other residual terms)

224 W m22

G0 Subsurface energy flux 10 W m22

G0 Greenhouse factor 2.0
L Precipitation to energy unit conversion 29 mm day21 W21 m2

Tg0 Reference temperature in CUS summer (ensemble mean of CMIP6X) 298 K
geb0 Ratio of the pressure at the emission height over the pressure depth of the boundary layer 0.8
vap0 Ratio of additional water amount for evapotranspiration to total precipitation 0.24
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land surface, and boundary layer energy budgets (Eatm, Esfc,
Ebl) averaged in the CUS summer,

­Eatm

­t
5 PR 3 L 2 Q 2 Hdiv, (1a)

­Esfc

­t
’ Rn 2 G0 2 (SH 1 LH); and (1b)

­Ebl

­t
’

­Ebl

­t

( )
rad

1
­Ebl

­t

( )
sfc

1
­Ebl

­t

( )
ent

, (1c)

where the subscripts div, rad, sfc, and ent depict the energy
tendencies due to atmospheric horizontal divergence, surface
radiation, surface turbulence, and boundary entrainment,
respectively.

Following Muller and O’Gorman (2011), Eq. (1a) decom-
poses the latent heat into total diabatic cooling (Q) and dry
static energy divergence (Hdiv) in the atmosphere. Assuming
the long-term mean in an atmospheric energy balance state
­Eatm/­t’ 0, we can estimate precipitation as

PR 3 L 5 Q 1 Hdiv ≡ (Rn 1 OLR 1 SWTOA
n 2 SH)

1 Hdiv, (2)

where surface net radiation is

Rn ≡ SWn 1 LWn ≡ (SWd 2 SWu) 1 (LWd 2 LWu) (3)

and L ≡ Ly/rw 5 29 (mm21 day W m22) is the unit conver-
sion from precipitation to energy. Adopting the conventional
definition of the coupled surface–atmosphere Earth system
emission temperature Te ≡ (OLR/s)1/4 and greenhouse factor
G ≡ (Tg/Te)4, where Tg is the ground (radiative) temperature
Tg ≡ (LWu/s)

1/4, we can approximate OLR in Eq. (2) using its
Taylor expansion with respect to Tg0 ≡ Tg 5 298K,

OLR ≡ sT4
e 5

sT4
g

G
5

s

G
T4
g0 1

­OLR
­Tg

dTg 1 O 2(Tg)
[ ]

’
s

G 0
[T4

g0 1 4T3
g0(Tg 2 Tg0)] ≡

Cg0Tg0

4G 0
1

Cg0

G 0
T′
g;

(4)

where Cg0 ≡ 4sT3
g0 ’ 5:9W m22 K21, and T′

g ≡ Tg 2 Tg0. Our
analysis showed that the warm and dry bias is insensitive to G ,
which is thus approximated asG 0 ≡ sT4

g /OLR ’ 1:78 (Table 2).
We further decompose Hdiv in Eq. (2) into a reference state

and its thermal plus dynamic perturbations}the biases in this
study. We consider that in midlatitudes the dynamic contribution
is much larger (than the thermal term) and linearly depends
on vertical velocity at 500 hPa (Muller and O’Gorman 2011).
Then we apply the omega equation to link vertical velocity to
the near-surface temperature latitudinal gradient. Taken to-
gether [see derivation details in the online supplemental
material for Eq. (5)]:

Hdiv ’ E H 2 aHT
′
g, (5)

where all residual terms are merged intoE H (Table 2). Equa-
tion (5) implies that a warmer CUS is associated with a smaller
temperature latitudinal gradient, which reduces the warm ad-
vection from the Gulf states, suppresses the rising motion in
CUS, and thus contributes negatively to local precipitation
through the flux divergence (aH). The advection contributes
to the bias through the dry-static energy, rather than the mois-
ture transport through the Great Plains low-level jet (LLJ).
Although the moisture transport was considered as a domi-
nant factor determining summer CUS precipitation and ex-
tremes (Li et al. 2011; Gimeno et al. 2016), our analysis based
on the indices of LLJ (Liang et al. 2004) or Bermuda high
(Zhu and Liang 2013) showed no statistically significant rela-
tionship with precipitation or temperature biases (Fig. S7).

Combining Eqs. (2)–(5) yields (see the corresponding pro-
cesses of the blue hub in Fig. 8)

PR 3 L ’ Rn 2 SH 2 (aH0 2 Cg0/G 0) 3 T′
g 1 E 0: (6)

Our derivation of the aH0 term (dry-static energy divergence
dependence on temperature) offers a new insight into the con-
ceptually similar energy transport coefficient in the Sellers-
Budyko model. By fitting CMIP6X data, we obtained
aH0 5 3.8 W m22 K21, which is the same as the transport coeffi-
cient used in McGuffie and Henderson-Sellers (2014). Similarly,
we obtained the residual term E 0 5 SWTOA

n 1 [Cg0Tg0/
(4G 0)]1E H 5 224 (Wm22) (see the online supplemental
material for details). For brevity we define apr0 ≡ aH0 2

Cg0/G 0 5 0:37W m22K21 (Table 2).

FIG. 8. The conceptual diagram summarizing the main compo-
nents and linkages of the analytical bias model (ABM). A parallel-
ogram lists a main input (SWn, LWd), while a rectangle lists a key
intermediate variable (LH, SH, LWu, Rn) and a final output
(T2, PR) with color shading. An arrow links a major equation with
its respective in/out variables using the same color for text and
lines. A dashed parallelogram lists a latent variable (cloud amount,
precipitable water) not directly used in the ABM. A circled X
depicts an essential hub linking the associated physical processes.
Different cumulus parameterization schemes define different cloud
bases and hence produce variations in low-level cloud and precipi-
table water amounts that drive the ABM.
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Assuming the long-term mean in a surface energy balance
state ­Esfc/­t ’ 0, Eq. (1b) gives

SH 5 Rn 2 G0 2 LH: (7)

Our analysis showed that the subsurface fluxG0 has no coher-
ent relationship with the warm and dry bias in CUS summer
among the CMIP6X models (Fig. 6). Thus, this term can be
approximated as G0 ’ (SWn 1 LWn)2 (LH 1 SH). In CUS
summer, G0 is about 10 W m22 as calculated from CMIP6X
simulations (Fig. 6), but the observed value (merged energy
flux measurements from eddy covariance towers with remote
sensing and meteorological data; Jung et al. 2019) is much
smaller (0.45 W m22). This may indicate systematic energy
leaking from land surface components in the CMIP6X models.

Letting SH’ Ch0 (Tg 2 T2) and taking Eq. (7) for the depar-
ture from the long-term mean of all CMIP6X models yield a di-
agnostic approximation (see Table 2 for Ch0 and Cg0 values) of

T′
2 ’ T′

g 1 1
Cg0

Ch0

( )
1

LH′ 2 LW′
d 2 SW′

n

Ch0
, (8)

where F′ ≡ F 2 F 0 for any variable F such as Tg, LH, LWd, or
SWn.

To estimate LWu [and hence Tg in Eq. (8)], we assume a
boundary layer energy balance state ­Ebl/­t ’ 0 in Eq. (1c).
We neglect the phase change effect such as due to raindrop
evaporation or condensation in this layer (Brubaker and
Entekhabi 1995, 1996; Otterman 1990), horizontal advection
terms (Otterman 1990; Betts 2000), and shortwave absorption
(Otterman 1990; Gentine et al. 2018). We also assume equilib-
rium potential temperature in the boundary layer is vertically
invariant (Brubaker and Entekhabi 1995, 1996), which can be
derived from entropy maximization (Bohren and Albrecht
2000), and is proportional to T2. Under these conditions, we
have

Cp

g
­T2

­t

( )
LW

1
Cp

g
­T2

­t

( )
SH

1
Cp

g
­T2

­t

( )
BE

’ 0: (9)

Equation (9) indicates that the T2 tendency is dominated by
surface longwave plus sensible heating as well as entrainment
cooling at the top of the boundary layer.

To estimate the longwave cooling (­T2/­t)LW, we assume
the local thermodynamic equilibrium and follow Coakley and
Yang (2014) for the longwave emission and its pressure (p)
gradient at the surface:

LWn 5 2pB⟦pt⟧exp 2
ps
pe

( )
2 pB⟦pt⟧ 1 2 exp

pt 2 ps
pe

( )[ ]
dLWn

dp

∣∣∣∣
p"ps

5 pB⟦pt⟧exp 2
ps
pe

( )
1 pB⟦pt⟧ 1 2 exp

pt 2 ps
pe

( )[ ]{ }/
pe 5 2LWn/pe,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

where a double bracket denotes for a function of the enclosed
variables, B is the Plank function, and ps, pt, and pe are the
pressures at the surface, tropopause, and emission height.
This leads to an approximation:

Cp

g
­T2

­t

( )
LW

’ 2
dLWn

dp

∣∣∣∣
p"ps

5
LWn

pe
≡

LWd 2 LWu

pe
: (11)

The PBL top entrainment cooling can be parameterized as a
fraction (AB0; Table 2) of the surface sensible heating (Stull
1988), which in turn is determined by the pressure gradient of
SH (Nicholls and Smith 1982). Thus, the tendency due to
these two factors can be jointly estimated as

Cp

g
­T2

­t

( )
SH

1
Cp

g
­T2

­t

( )
BE

’ (1 2 AB0)
­SH
­p

’ (1 2 AB0)
SH

ps 2 pb
,

(12)

where AB0 is the fractional Ball parameter and pb the pressure
at the PBL top.

Combining Eqs. (9), (11), and (12) leads to the estimation
of LWu from LWd and SH (see the corresponding processes
of the orange hub in Fig. 8):

LWu 2 LWd ’
pe

ps 2 pb
(1 2 AB0) 3 SH ≡ geb 3 SH, (13)

where geb is a dimensionless parameter defined as the product
of the emission to PBL depth pressure ratio pe/(ps 2 pb) and
the Ball fraction residual (1 2 AB0). A more stable surface
layer, which depresses the PBL depth, may also be associated
with a lower cloud layer, which lowers the emission height;
both conditions increase geb. Reversely, an unstable surface
layer along with a higher cloud layer decrease geb. Their disas-
sociation can change geb in either direction. Thus, geb depicts
the partitioning of surface net longwave cooling between sen-
sible heat loss and cloud warming feedback. Based on ERA5
daily mean analysis data, the CUS summer long-term average
geb0 ’ 0.8 (see the supplemental material for calculation
details). As limited by data availability (e.g., the daily PBL
depth was missing in many models), we explored the ABM
sensitivity to geb variations around geb0 in counterfactual ex-
periments (Fig. S8). We found that temperature is more sensi-
tive to geb than precipitation and a larger geb leads to a larger
temperature bias.

To estimate the remaining unknown term (LH) in Eq. (8),
we adopt the Budyko (1974) curve. Using the conventional
definition of the Bowen ratio BR ≡ SH/LH and the aridity
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index AI ≡ Ep/PR, which depicts soil water availability, we
can estimate surface potential ET (Ep) in the energy form:

Ep 5 (Rn 2 G0) 3 L 21: (14)

Considering actual ET ≡ LH3L 21 and dividing Eq. (7) by
PR leads to

AI ≡
Ep

PR
5

ET
PR

1
SH 3 L 21

PR
5

ET
PR

1
SH
LH

3
ET
PR

5
ET
PR

(1 1 BR) ⇒ ET 5
AI 3 PR
1 1 BR

: (15)

Budyko (1974) presented his curve: BR ’ C bAI5AI/�������������������������������������
AI3 tanh⟦AI21⟧(12 e2AI)

√
2 1. The curve assumes that

soil water storage and ground heat flux are negligible (Gerrits
et al. 2009). This assumption is reasonable for the long-term
annual average, but not valid for CUS summer where soil wa-
ter storage is an important source (Ting et al. 2021). Consider-
ing that soil moisture provides additional water for ET, which
is equivalent to increasing precipitation, we may define an
effective aridity index AIeff ≡ AI(1 1 vap0)

21 to approximate
the storage effect,

BR ’ C bAIeff 5 C bAI⟦(1 1 vap0)21⟧, (16)

where the dimensionlessvap is defined as the ratio of additional wa-
ter (WA) for ET to total precipitation (vap ≡ WA/PR). Following
Hartmann (2015), ignoring minor surface condensation, summer
average soil water storage change rate WS ’ PR 2 ET 2 RO,
where RO is runoff. That is, PR 2 ET ’ RO 1 WS. We can
see that any reduction from (RO 1 WS) would be equivalent
to the increasing water WA for ET. Thus, vap ’ 2(RO 1

WS)/PR. Our ABM sensitivity analysis (Fig. S8) showed the
warm and dry bias is insensitive to vap in the range from 0.1 to
0.5, which may cause insignificant uncertainty in temperature
bias# 0.1 K and precipitation bias# 0.1 mm day21. Since soil
moisture and runoff data were not available for many models,
we used ERA5 to derive the approximation as vap0 ’ 0.24
(Table 2). Conceptually, vap is like the recycling rate, and our
estimate is close to the value from the diagnosis of Dominguez
et al. (2006).

Combining Eqs. (14)–(16) links LH with PR and Rn as a
function of the modified Budyko curve (see the corresponding
processes of the green hub in Fig. 8):

LH ≡ L 3 ET ’
L 3 PR 3 AI
1 1 C b⟦AIeff⟧

≡ L 3 PR 3 fb⟦AIeff⟧

fb⟦AIeff⟧ ≡ (1 1 vap0)
�����������������������������������������������
AIeff 3 tanh⟦AI21

eff ⟧ 3 (1 2 e2AIeff )
√

AIeff⟦Rn, PR⟧ ≡
Rn 2 G0

L 3 PR 3 (1 1 vap0)

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

The complete ABM consists of Eqs. (3), (6)–(8), (13), and (17). It
requires specific input (LWd, SWn) as long-term (1980–2010) sum-
mer averages from individual CMIP6X models, the prescribed

parameters from the ensemble mean of all CMIP6X models
(apr0, Ch0, E 0, G0, Tg0) and the ERA5 reanalysis (vep0, geb0),
and some constants (Table 2). Through recursive iterations, the
ABM solves the coupled (T2, PR) responses to the biases and
spreads of (LWd, SWn) among the CMIP6X models, where LH,
SH,Rn, LWu, andEp are intermediate dependent variables. How-
ever, the ABM is a nonlinear balance system that can have multi-
ple solutions, depending most sensitively on the starting PR value
(PRs). This mainly results from the feedback processes that de-
pend on the Budyko curve. Dry conditions may lead to a stronger
positive soil moisture–precipitation feedback and greater sensitiv-
ity than wet anomalies (Hohenegger et al. 2009; Koster et al.
2004; Zaitchik et al. 2013). Therefore, to obtain a realistic solution,
we start the ABM iterations with PRs set to the long-term aver-
aged summer mean PR from each of the CMIP6Xmodels.

5. ABM simulations and stability analyses for CMIP6X
bias mechanisms

Figure 9 compares the (T2, PR) biases simulated by the
ABM and CMIP6X models. The ABM can explain 82% tem-
perature and 81% precipitation variance of the biases among
all CMIP6X models. These percentages or coefficients of de-
termination (R2) were based on the one-to-one relationship
between the ABM and CMIP6X biases, rather than the linear
regression fitting them. This avoids overlooking the confidence
of the result with a high correlation but incorrect amplitude
(Legates and McCabe 1999). The regression (slope, intercept)
of CMIP6X with ABM are (0.818 6 0.048, 0.328 6 0.108C) for
temperature and (1.196 0.04, 20.126 0.02 mm day21 for pre-
cipitation. As compared with the existing CAUSES outcome
(R2 5 0.61), our result represents a significant improvement for
both temperature and precipitation, having higher R2 scores,
slopes closer to 1, and intercepts closer to 0. The first two meas-
ures indicate that the ABM well captures the spread of biases
among all CMIP6X models, while the third measure depicts a
high certainty in estimating the system sensitivity as derived in
Eq. (S8). Therefore, the ABM can represent the principal rela-
tionships among surface climate variables in summer CUS, ren-
dering a significant confidence for application to study the
physical mechanisms of biases.

Below we conducted ABM counterfactual experiments to
identify the key mechanisms for the warm and dry bias. In
each experiment, for a specific input factor (LWd, SWn, PRs),
we replaced its values from all individual CMIP6X models
with the mean of the subset models using the LCL-based cu-
mulus parameterizations to quantify its contribution to the
bias (see the supplemental material for calculation details).
This experimental approach enables us to consider interactions
among feedback processes in the entire system, which is critical
but often overlooked in previous studies on bias mechanisms
(Stephens 2005). Additional experiments were conducted to ex-
amine the ABM result sensitivity to the prescribed key parame-
ters (geb0, vap0). This approach may not test uncertainties
associated with all physical assumptions and numerical approxi-
mations used in building the ABM. However, our focus is to
seek a useful alternative physical proxy that enables a better un-
derstanding of the complex nonlinear feedbacks underlying the
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fully coupled CMIP6X simulations and hence offers an explicit
explanation for the spread of biases among models. This alterna-
tive approach is recommended for feedback analysis (Stephens
2005).

Figure 10 compares the attributions to the CUS summer
warm and dry bias. When adopting a common LWd value as

the mean of the subset models using the LCL-based parame-
terization, other cumulus schemes (LFC, PLL, BMJ) would
significantly reduce the warm bias by (1.78, 2.18, 0.78C) and in-
crease precipitation by (0.6, 0.6, 0.4 mm day21). The BMJ
models contain significantly larger uncertainty than other
groups. Correspondingly, when adopting a common SWn

FIG. 9. The analytical bias model (ABM) estimated vs the CMIP6X simulated CUS summer (1980–2014) mean
biases in temperature (T2; 8C) and precipitation (PR; mm day21). The red line depicts the linear regression, the red
shading shows the 95% confidence intervals, and the red label gives the explained variance (R2 score based on one-to-
one bias correspondences rather than their regression fitting). The blue circle denotes the bias from each of the
72 CMIP6X models averaged over all its realizations, the light vertical line for one standard deviation among the real-
izations, and the radius for the model resolution.

FIG. 10. The ABM estimated (a)–(c) temperature and (d)–(f) precipitation effects if assigning the result of the LCL cumulus scheme to
the respective values in all models for (left) LWd, (center) SWn, and (right) PRs. Different cumulus schemes are separated by colors.
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value from the mean of the LCL models, other cumulus
schemes would reduce the warm bias by 0.78, 0.78, and 0.08C
and increase precipitation by 0.3, 0.3, and 0.4 mm day21, re-
spectively. These warm and dry bias reductions induced by
SWn are much smaller than those by LWd, with the former ac-
counting for only 20%–50% of the latter. See appendix for
the explanation why CUS summer is more sensitivity to LWd.
The uncertainties in estimating the contributions decrease
from LWd to SWn. In addition, when adopting a common PRs

value from the mean of the LCL models, other cumulus
schemes would reduce the warm bias by 0.48, 0.58, and 0.18C
and increase precipitation by 0.4, 0.4, and 0.1 mm day21, respec-
tively. These bias reductions are comparable with those induced
by SWn, although the uncertainties of the estimation increase.

The above ABM experiments allow us to attribute the major
cause for the warm and dry bias to the excessive radiative en-
ergy reaching the surface together with insufficient rainfall. An
important question is why most of the excessive energy flows
into the sensible rather than latent heat and what mechanisms
amplify initial perturbations toward significant biases}a po-
tential runaway problem. To address this question, we con-
ducted a feedback analysis following Roe (2009) and showed
that the system bias behavior depends on the fb range (see
appendix for derivations). The fb range can be divided by a
threshold at 0.6, which corresponds approximately to a mean
precipitation amount of 8.8 mm day21. Since summer CUS
mean precipitation is only 3.3 mm day21 in observations and
less than 3.9 mm day21 in all CMIP6X models, the combined
radiative forcing SW′

n 3 geb 1 LW′
d 3 (11 geb) in Eq. (A5)

induces a runaway feedback for both temperature and precipi-
tation. Larger surface radiative forcing leads to warmer Tg and
so larger LWu. Warmer Tg produces larger SH and so higher
T2, which in turn suppresses warm advection toward CUS and
hence reduces vertical motion. Meanwhile, larger LWu enter-
ing the atmosphere reduces the demand for latent heat release
from precipitation. Both lead to smaller PR [Eq. (6)] and so
drier soil for less ET and LH [Eq. (17)], which is balanced by
larger SH [Eq. (7)]. Given the energy balance in the surface
boundary layer [Eq. (1c)], larger SH leads to higher LWu. This
positive feedback evolves into a runaway problem in most
CMIP6X models using non-LCL cumulus schemes, causing sig-
nificant warm and dry biases.

6. Summary and conclusions

This study showed that substantial warm and dry biases per-
sisted in summer CUS among most climate models despite re-
markable improvements in the latest CMIP6 (Eyring et al.
2019) and even in high-resolution simulations. Meanwhile,
S&L demonstrated that CWRF defining the cloud base at LCL
in cumulus parameterization can significantly reduce the biases.
Following this idea, we grouped all 72 CMIP6X models by four
cloud base definitions in their cumulus schemes. Our composite
analysis indicated that the models using the LCL-based schemes
simulated systematically smaller warm and dry biases than others.
A more comprehensive analysis of precipitation decompositions,
radiative fluxes, and surface budgets confirmed that the cloud
base definition is the dominant factor determining the spread of

the biases among the CMIP6X models and those using the LCL
definition performed the best.

The statistical analyses cannot determine the causality or
physical mechanisms underlying the relationships among
model biases. To identify these feedback mechanisms and
quantify the key contributions to the spread of the biases
among the CMIP6X models, we developed a physically based
ABM that captures the principal energy balances of the cou-
pled surface–atmosphere system. The ABM consists of three
major physical parameterizations that link 1) precipitation with
surface net radiation minus sensible heat flux and ground tem-
perature departure from a reference state; 2) surface latent heat
flux (and hence evapotranspiration) with precipitation in pro-
portion to a generalized Budyko curve of an effective aridity in-
dex; and 3) surface net longwave radiation with a negative
proportion of sensible heat flux. With these new parameteriza-
tions, we introduced two key dimensionless numbers, geb and
vpe, to respectively characterize the land–atmosphere coupling
strength through energy and water exchanges. The ABM solves
recursively the coupled (T2, PR) responses to the driving biases
and spreads of (LWd, SWn, PRs) among the CMIP6X models.
This is analogous to the surface forcing and response frame-
work (Andrews et al. 2009), the ABM enables us to gain physi-
cal insight into the bias causes. Using the prescribed parameters
from observational data or multimodel ensemble means, the
ABM has significant explanatory power for CUS summer warm
and dry biases, capturing 80% variance of temperature and pre-
cipitation biases among all CMIP6X models.

We conducted ABM counterfactual experiments to attribute
the key factors for the warm and dry bias and found that the
LCL cumulus parameterization reduces the warm and dry bias
through two principal mechanisms. First, it produces more low
clouds and smaller total precipitable water, which reduce respec-
tively the downwelling (and net) shortwave and longwave radia-
tion reaching the surface and thus provide less energy available
for surface heating and evapotranspiration, causing a cooler and
wetter soil. Second, it produces more rainfall and wetter soil con-
ditions, which prevent the land surface runaway toward the hot-
drought state as driven by the strong positive ET–PR feedback
and hence eliminate the warm and dry bias. Further analysis re-
vealed that, under relative dry conditions in most CMIP6X mod-
els, primary surface downwelling longwave errors combined with
secondary net shortwave flux errors drive the climate system into
the runaway stage, causing a lock in a dry and warm bias loop.

This study offered a systematic approach to determine com-
mon deficiencies, identify sensitive factors, quantify relative
contributions, and understand dominant mechanisms for CUS
summer warm and dry biases and their spreads across the
CMIP climate models. The developed ABM, with large ex-
planatory power for CUS summer biases, can be applied to
other regions with similar climate characteristics. This analyti-
cal modeling and physical understanding laid a solid founda-
tion for not only climate model improvement but also more
interpretable and reliable climate prediction in CUS. Our
ABM analysis supports the projected coexistence of severe
heat stress with more devastating drought (Zhou et al. 2019;
Ting et al. 2021) and the observational interpretation of the
potential feedback processes in CUS summer (Taylor et al.
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2012). It also explains how underestimation of precipitation
(Lin et al. 2017), cloud (Cheruy et al. 2014), and evapotranspi-
ration (Mueller and Seneviratne 2014) can jointly cause the
warm and dry bias and quantifies their relative contributions.
Our ABM analysis indicated that CUS summer warm and dry
biases among CMIP6X models are attributed mostly by surface
downwelling longwave radiation errors and second by surface
net shortwave radiation errors, with the former 2–5 times larger.
These two errors as weighted by their relative contributions
form an effective radiative forcing to induce runaway tempera-
ture and precipitation feedbacks, which collaborate to cause
CUS summer warm and dry biases. Note that the ABM circum-
vents explicit representation of the large uncertainty associated
with clouds by taking input of surface radiation fluxes from
CMIP6X models. This implicit treatment could underestimate
the buffering effect from cloud-induced negative feedbacks
(Stephens and Webster 1981). The consequence of this limita-
tion warrants further investigation.
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APPENDIX

To linearize the ABM system, we fix Budyko function
fb ’ fb0, approximate (1 1 x)1/4 ’ 1 1 x/4, expand
LWu 5 LWu0 1 LW′

u, and use LWu0 ≡ sT4
g0. This leads to

Tg 5
LWu0 1 LW′

u

s

( )1/4
’

LWu0

s

( )1/4
1 1

LW′
u

4LWu0

( )

5 Tg0
3
4
1

LWu

4LWu0

( )
5

3Tg0

4
1

LWu

Cg0
: (A1)

The ABM system can now be simplified and linearized as

LH 5 L fb0PR

SH 5 Rn 2 LH 2 G0

PR 5 L 21(Rn 1 Apr0 2 SH 2 apr0C
21
g0 LWu)

LWu 5 gebSH 1 LWd

Rn 5 LWd 2 LWu 1 SWn

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(A2)

where Apr0 ≡ apr0Tg0/41E 0 5 4:5 (Wm22). Since T2 is a di-
agnostic variable, we proxy its feedback effect through Tg

as they explain each other 95% of covariance (Fig. S9) and
then substitute Tg by LWu as in Eq. (A1).

From Eq. (A2),

LWu 5 (fb0n 2 geb)︸�����︷︷�����︸
FLWu

LWu 1 R0

PR 5 fb0n︸︷︷︸
FPR

PR 1 L 21R1

n ≡ 1 1 geb(1 1 Cg0
21apr0)

⇒
­fb
­PR,0

­FLWu

­PR
, 0

­FPR

­PR
, 0

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(A3)

where FLWu
and FPR are the feedback factors, and R0 and

R1 are the radiative forcings:

R0 ≡ (1 2 fb0)Re 1 c0

R1 ≡ 2mRegebapr0Cg0
21 1 c1

Re ≡ SWngeb 1 LWd(1 1 geb)

m ≡
1 2 fb0n

1 2 fb0n 1 geb

c0 ≡ 2 Apr0fb0geb 2 G0geb

c1 ≡ mApr0(1 1 geb) 1 mG0[gebapr0Cg0
21 1 (1 1 geb)]

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(A4)

Taking c0 and c1 as fixed values, the perturbed forcings
(biases) for the system are

R′
0 5 (1 2 fb0)R′

e

R′
1 5 2mR′

egebapr0C
21
g0

R′
2 5 SW′

ngeb 1 LW′
d(1 1 geb)

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A5)

As shared between R′
0,1, the effective forcing R′

e combines
surface radiative perturbations SW′

n and LW′
d as weighted by

geb and (1 1 geb). The fraction of the weights depicts the rela-
tive contribution of SW′

n and LW′
d to the bias of Tg (~T2) or

PR. As such, the LWd forcing plays a dominant role.
Equation (A3) indicates that drier conditions exacerbate the

feedback. We can derive two thresholds to determine whether
the feedback is in a negative or positive or runaway state:
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{
klw0 ≡ n21geb

klw1 ≡ n21(geb 1 1) ⇒
fb0 , klw0 ⇒ FLWu

, 0

klw0 , fb0 , klw1 ⇒ 0 , FLWu
, 1

klw1, fb0 ⇒ FLWu
. 1

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(A6)

For LWu and so Tg, it is a negative feedback when fb0 ,

klw0 ’ 0.4, but a positive feedback when klw0 , fb0 , klw1 ’

0.97. Since the summer CUS perturbation of surface net
shortwave plus downwelling longwave radiative is positive
(LW′

d . 0, SW′
n . 0), the forcing is positive R′

0 . 0. The posi-
tive feedback along with a positive forcing leads to warmer Tg.
Once fb0 exceeds klw1, the feedback enters a runaway stage, the
feedback-factor analysis is no longer valid (Roe 2009). However,
we can prove that the runaway effect always enhances warm
and dry biases (see the online supplemental material for deriva-
tion details).

For precipitation it is a positive feedback when fb0 ,

n21 ’ 0.6. Given m ≡ (12 fb0n)/(12 fb0n1 geb). 0, and
for LW′

d . 0, SW′
n . 0, we have R′

1 . 0. Thus, the positive
feedback with a negative forcing reduces precipitation. Drier
conditions increase AI and fb, which strengths the feedback
[Eq. (A3)] and thus drive precipitation to enter a runaway
condition.
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